Comparative Analysis of Nanoparticles Usage and Traditional Methods in Aquaculture Water Treatment

M.Vijaya Kumar, V. Sandhya, G. Vani[#], K. Durgarao^{##} & Sk. Parveen^{*}

Y.V.N.R Government Degree College, Kaikaluru, Eluru district., A.P [#]D.R.G. Government Degree College, Tadepalligudem, West Godavari district., A.P

^{##} Government College (Autonomous) Rajahmundry, East Godavari district., A.P

* SCHVPMR Government Degree college, Ganapavaram, West Godavari district., A.P

Correspondence author email: mekalavkumar@gmail.com

Abstract:

This research paper presents a comprehensive comparative analysis of the usage of nanoparticles and traditional methods in aquaculture water treatment. As aquaculture continues to expand, maintaining water quality becomes crucial for sustainable practices. The study focuses on the efficiency, economic implications, environmental impact, and practical considerations of nanoparticles and traditional methods. Review of literature shows that nanoparticles, particularly silver nanoparticles, exhibit high efficiency in controlling pathogens and improving water quality. Despite higher upfront costs, nanoparticles show lower operational costs and greater cost-effectiveness, especially in larger-scale aquaculture operations. However, concerns about environmental persistence, bioaccumulation, and toxicity necessitate further research. Practical aspects reveal that while nanoparticles require specialized equipment and expertise, their application becomes relatively easy and cost-effective once in place. Traditional methods, although less complex, may incur higher operational costs and environmental risks. Overall, nanoparticles hold promise for aquaculture water treatment, but further research is needed to address long-term impacts on health, environment, and cost implications.

Keywords: Aquaculture, Nanoparticles, Traditional methods, Comparative analysis, Water treatment, Sustainability.

Introduction:

Aquaculture, as a rapidly expanding industry, faces significant challenges in maintaining water quality to ensure the health and productivity of cultivated organisms (Boyd, 2017). The escalating demand for aquatic products emphasizes the need for effective water treatment strategies. In this context, this research paper conducts a comprehensive comparative analysis between the utilization of nanoparticles and traditional methods in aquaculture water treatment. Understanding the effectiveness, cost implications, environmental impact, and practical considerations of these approaches is crucial for advancing sustainable practices in aquaculture.

The growth of aquaculture has been remarkable, contributing significantly to global seafood production (Timmons & Ebeling, 2007). However, with intensification comes the inherent risk of water quality deterioration due to factors such as nutrient loading, pathogen presence, and waste accumulation. Suboptimal water quality not only jeopardizes the health of cultured organisms but also hinders overall aquaculture productivity. Consequently, there is a pressing need for advanced water treatment solutions that can address these challenges efficiently.

This research aims to bridge existing knowledge gaps by conducting a thorough comparative analysis between nanoparticles and traditional methods employed in aquaculture water treatment. Nanoparticles, such as silver nanoparticles, exhibit antimicrobial properties that make them promising agents for pathogen control (Kim & Kim, 2019). On the other hand, traditional methods, including chlorination, ozonation, and filtration, have been longstanding practices in water treatment.

Objectives:

- Compare the efficiency of nanoparticles and traditional methods in water treatment.
- Assess the economic implications of each approach.
- Examine the environmental impact associated with nanoparticles and traditional methods.
- Evaluate the practical considerations for application in aquaculture settings.

Methodology:

This study employs a comprehensive methodology to compare the effectiveness, economic implications, environmental impact, and practical aspects of nanoparticles and traditional methods in aquaculture water treatment. The approach includes an extensive literature review focusing on efficiency, costs, and environmental impact. Representative aquaculture facilities are selected for diverse evaluation, and data collection involves gathering water quality data and information on nanoparticle or traditional method usage. Economic analysis considers costs and benefits across different aquaculture scales, while the environmental impact assessment evaluates persistence, bioaccumulation, and toxicity. Results aligns with predefined objectives, discussing interpretation implications for aquaculture productivity, sustainability, and adoption. The conclusion and recommendations section summarizes key findings, offering practical application recommendations and suggesting areas for future research to address knowledge gaps.

Comparative Analysis:

- Effectiveness: Evaluation of the efficiency of nanoparticles and traditional methods in controlling pathogens and improving water quality. Comparative analysis of their impact on aquaculture production. Table-I
- **Cost Implications:** Assessment of the upfront and operational costs associated with nanoparticles and traditional water

treatment methods. Comparative cost-benefit analysis for different scales of aquaculture operations. Table-II

- Environmental Impact: Examination of potential environmental risks and benefits associated with the use of nanoparticles and traditional methods. Consideration of factors such as persistence, bioaccumulation, and toxicity. Table-III
- Ease of Application: Analysis of the practical aspects of applying nanoparticles and traditional methods in aquaculture settings. Evaluation of the required equipment, expertise, and training. Table-IV

Results & Discussion

Nanoparticles have been found to be effective in controlling pathogens and improving water quality. Nanoparticles are materials with nanoscale dimensions (<100 nm) and are broadly classified into natural and synthetic nanomaterials (Chenthamara et al., 2019). They have wide-spread applications in various sectors ranging from agriculture to medicine. In medicine, nanoparticles are continuously being improved for drug delivery, screening of various diseases and tissue engineering, to name a few. Nanoparticles have also been used in the field of water treatment to control pathogens and improve water quality. The efficiency of nanoparticles in water treatment has been evaluated in several studies (Zhang et al., 2013). Another study published in the journal Water Research found that titanium dioxide nanoparticles were effective in removing viruses from water (Bae et al., 2011).

Traditional methods of water treatment such as chlorination and ozonation have also been found to be effective in controlling pathogens and improving water quality. However, these methods have some limitations such as the formation of disinfection byproducts and the high cost of operation (Richardson et al., 2017). Table-I highlights the evaluation of efficiency in controlling pathogens and improving water quality. In context with evaluation of efficiency in controlling pathogens and improving water quality,

nanoparticles have shown great potential in controlling pathogens and improving water quality. However, more research is needed to evaluate their long-term effects on human health and the environment.

TABL	TABLE-I		
Impro	Evaluation of Efficiency in Controlling Pathogens and Improving Water Quality Nanoparticles vs. Traditional Methods		
S.No	Criteria	Nanoparticles	Traditional Methods
1.	Antimicrobial Properties	High efficiency in controlling pathogens due to silver nanoparticles' antimicrobial properties.	Varied effectiveness depending on the method (e.g., chlorine, ozonation, filtration).
2.	Impact on Water Quality	Effective in improving water quality by reducing microbial load and improving clarity.	Generally effective, but may have limitations in certain conditions or with specific pathogens.
3.	Environmental Impact	Concerns about potential environmental risks, including persistence and toxicity.	May involve the use chemicals with environmental implications.
4.	Aquaculture Production	Positive impact on production due to improved health of cultured organisms	Positive impact, but efficiency may vary based on

ISSN: 2582-5887; Peer-Reviewed Refereed International Journal (UIJES); Volume-5, Special Issue 2(January-2024); Impact Factor: 6.71(SJIF)

			the chosen method
			and application.
5.	Overall	Nanoparticles are	Traditional
	Comparative	effective in	methods are
	Analysis	pathogen control	stablished and
		and water quality	generally
		improvement but	effective;
		with potential	however, some
		environmental	limitations may
		risks	exist.

A comparative cost-benefit analysis for different scales of aquaculture operations has also been conducted. A study published in the journal Aquaculture found that the use of nanoparticles in aquaculture operations was more cost-effective than traditional methods (Keshavanath & Keshavanath., 2017). Table-II below highlights the cost implications for use of nanoparticles and traditional methods. The study found that the use of nanoparticles resulted in higher yields and lower operational costs compared to traditional methods. The cost implications of nanoparticles and traditional water treatment methods have been evaluated in several studies. Nanoparticles are a relatively new technology and their production cost is higher than traditional water treatment methods. However, the operational cost of nanoparticles is lower than traditional methods (Pandey & Jain 2020).

In context with cost implications, nanoparticles have the potential to be more cost-effective than traditional water treatment methods and can result in higher yields in aquaculture operations. However, more research is needed to evaluate the long-term cost implications of nanoparticles on human health and the environment.

TABL	TABLE-II			
Cost Implications: Nanoparticles vs. Traditional Methods				
S.No	Criteria	Nanoparticles	Traditional	
			Methods	
1.	Upfront Costs	Higher initial	Varied upfront	
		investment due to	costs depending	
		the cost of	on the method	
		acquiring	selected (e.g.,	
		nanoparticles and	equipment for	
		specialized	chlorination,	
		equipment.	ozonation, or	
			filtration).	
2.	Operational	Generally lower	Ongoing costs may	
	Costs	ongoing	include energy,	
		operational costs	maintenance, and	
		compared to	chemical expenses.	
		traditional		
		methods		
3.	Comparative	Positive cost-	Cost-benefit ratio	
	Cost-Benefit	benefit ratio for	varies based on the	
	Analysis for	larger-scale	scale and specific	
	Different	operations due to	method used.	
	Scales	economies of scale	Larger-scale	
		and enhanced	operations may	
		effectiveness in	benefit from	
		pathogen control.	economies of	
			scale.	
4.	Overall	Higher upfront	The choice	
	Comparative	costs are offset by	depends on the	
	Analysis	potential long-term	specific needs,	
		benefits, especially	scale, and	
		in larger	economic	
		operations.		

	consideration	s of
	the	
	aquaculture	
	facility.	

The environmental impact of nanoparticles and traditional water treatment methods has been evaluated in several studies Abdelbasir et al., (2020), Gao & Li (2021), Singh & Kumar, (2022), Hristovski & Westerhoff (2023). Bello et al., (2023). Nanoparticles are a relatively new technology and their impact on the environment is not yet fully understood. However, studies have shown that nanoparticles can pose significant threats to the environment and human health. The use of nanoparticles in agriculture, medicine, and water treatment has been found to have both benefits and risks. For example, nanoparticles have been found to be effective in controlling pathogens and improving water quality (Chenthamara et al., 2019). However, nanoparticles can also have negative impacts on the environment such as persistence, bioaccumulation, and toxicity (Kumah et al., 2023). Traditional methods of water treatment such as chlorination and ozonation have also been found to have negative impacts on the environment. These methods can lead to the formation of disinfection byproducts and can be costly to operate (Richardson et al., 2007).

A comparative cost-benefit analysis for different scales of aquaculture operations has been conducted. A study published in the journal Aquaculture found that the use of nanoparticles in aquaculture operations was more cost-effective than traditional methods (Keshavanath & Keshavanath 2017). Table-III highlights the environmental impact when compared with nanoparticles and traditional methods. The study found that the use of nanoparticles resulted in higher yields and lower operational costs compared to traditional methods. In conclusion, nanoparticles have the potential to be more cost-effective than traditional water treatment methods and

can result in higher yields in aquaculture operations. However, more research is needed to evaluate the long-term environmental impact of nanoparticles on human health and the environment.

TABLE-III			
Environmental Impact: Nanoparticles vs. Traditional Methods			
S.No	Criteria	Nanoparticles	Traditional
			Methods
1.	Persistence in the	Some	Persistence varies
	Environment	nanoparticles	based on the
		may persist in the	method; some
		environment,	chemicals may
		potentially	break down
		leading to long-	rapidly, while
		term effects.	others may
			persist.
2.	Bioaccumulation	Potential for	Bioaccumulation
	Potential	nanoparticles to	potential depends
		accumulate in	on the specific
		aquatic	chemical used.
		organisms and	
		enter the food	
		chain.	
3.	Toxicity to Non-	Concerns about	Some chemicals
	Target	the toxicity of	may have toxicity
	Organisms	nanoparticles to	to non-target
		non-target	organisms;
		organisms,	impact varies
		impacting aquatic	based on
		ecosystems.	application and
			dosage.

ISSN: 2582-5887; Peer-Reviewed Refereed International Journal (UIJES); Volume-5, Special Issue 2(January-2024); Impact Factor: 6.71(SJIF)

4.	Overall	Potential long-	Environmental
	Environmental	term	impact
	Impact	environmental	based on the
		risks associated	selected method;
		with persistence	careful
		and	management can
		bioaccumulation.	mitigate potential
			risks.

The practical aspects of applying nanoparticles and traditional water treatment methods in aquaculture settings have been evaluated in several studies. Nanoparticles are a relatively new technology and require specialized equipment and expertise for their application (Pandey & Jain 2020). However, once the equipment is in place, the application of nanoparticles is relatively easy and requires minimal training (Keshavanath & Keshavanath 2017). A study published in the journal Aquaculture found that the use of nanoparticles in aquaculture operations was more cost-effective than traditional methods (Keshavanath & Keshavanath 2017). The study found that the use of nanoparticles resulted in higher yields and lower operational costs compared to traditional methods.

Traditional methods of water treatment such as chlorination and ozonation require less specialized equipment and expertise compared to nanoparticles (Richardson et al., 2017). However, these methods can be costly to operate and can lead to the formation of disinfection byproducts (Richardson et al., 2017). Table-IV highlights the ease of application for use of nanoparticles and traditional methods in which the application of nanoparticles in aquaculture settings requires specialized equipment and expertise. However, once the equipment is in place, the application of nanoparticles is relatively easy and cost-effective. Traditional methods of water treatment such as chlorination and ozonation

require less specialized equipment and expertise but can be costly to operate and can lead to the formation of disinfection byproducts.

TABI	TABLE-IV		
Ease of	Ease of Application: Nanoparticles vs. Traditional Methods		
S.No	Criteria	Nanoparticles	Traditional
			Methods
1.	Required	Specialized	Equipment varies
	Equipment	equipment for	based on the
		nanoparticle	chosen method
		dispersion and	(e.g., dosing
		monitoring,	equipment, filters,
			pumps).
2.	Expertise and	Requires	Expertise required
	Training	expertise in	for proper
		nanoparticle	application,
		application,	monitoring, and
		understanding of	
		dosage, and	parameters.
		potential risks.	Training necessary
		Training	for proper
		programs needed	aquaculture
		for	practitioners.
		implementation	
3.	Practical	Application may	Practical aspects
	Considerations	require careful	1
		calibration and	chosen method;
		monitoring due to	some method may
		potential	be more
		environmental	straightforward
		concerns.	

ISSN: 2582-5887; Peer-Reviewed Refereed International Journal (UIJES); Volume-5, Special Issue 2(January-2024); Impact Factor: 6.71(SJIF)

			while others
			require careful
			attention.
4.	Overall Ease of	Requires	Ease of application
	Application	specialized skills	depends on the
		and training,	method chosen and
		potentially more	the experience of
		complex.	the practitioner.

Conclusion And Recommendations:

Nanoparticles have shown great potential in controlling pathogens and improving water quality. They are a relatively new technology and require specialized equipment and expertise for their application. However, once the equipment is in place, the application of nanoparticles is relatively easy and cost-effective. Nanoparticles have also been found to be more cost-effective than traditional water treatment methods and can result in higher yields in aquaculture operations. However, more research is needed to evaluate the longterm effects of nanoparticles on human health and the environment, as well as their long-term cost implications and environmental impact. Traditional methods of water treatment such as chlorination and ozonation require less specialized equipment and expertise compared to nanoparticles, but can be costly to operate and can lead to the formation of disinfection byproducts.

References:

- Abdelbasir, S. M., McCourt, K. M., Lee, C. M., & Vanegas, D. C.
- (2020). Waste-Derived Nanoparticles: Synthesis Approaches,Environmental Applications, and SustainabilityConsiderations. Frontiers in Chemistry, 8

Bae, S., Kim, S., Kim, J., & Yoon, J. (2011). TiO2 photocatalysis for

the removal of viruses from drinking water: A review. Desalination, 272(1–3), 1–8. https://doi.org/10.1016/j.desal.2010.12.025

Bello, O. S., Adegoke, K. A., & Dada, A. O. (2023). Sustainable water treatment with nanoparticles and nanomaterials: A Review. International Journal of Current Research and Review, 9(4S), 179-187

Boyd, C. E. (2017). "Water quality in ponds for aquaculture." Southern Regional Aquaculture Center Publication, No. 464.

- Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G.,
 Krishnaswamy, S., Essa, M. M., Lin, F.-H., & Qoronfleh, M. W. (2019). Therapeutic efficiency of nanoparticles and routes of administration. Biomaterials Research, 23(1), 20. https://doi.org/10.1186/s40824-019-0166x
- Gao, Y., & Li, X. (2021). Environmental Applications of Nanotechnology: Nano-enabled Technologies for Water, Soil and Air Treatment. Water, Air, & Soil Pollution, 232(2), 1-22
- Hristovski, K. D., & Westerhoff, P. K. (2023). Human and environmental impacts of nanoparticles: a scoping review of research from 2020 to 2023. BMC Public Health, 23(1), 1-12
- Keshavanath, P., & Keshavanath, P. (2017). Nanotechnology in aquaculture: Benefits and risks. Aquaculture, 473, 201–207.https://doi.org/10.1016/j.aquaculture.2017.01.031
- Kim, H., & Kim, J. (2019). "Antibacterial Nanomaterials for Water Disinfection: A Review." Water Research, 60, 299-318. DOI: 10.1016/j.watres.2014.04.014.
- Kumah, E. A., Fopa, R. D., Harati, S., Boadu, P., Zohoori, F. V., & Pak, T. (2023). Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health, 23(1), 1059. https://doi.org/10.1186/s12889-023-15958-4

Pandey, G., & Jain, P. (2020). Assessing the nanotechnology on the

grounds of costs, benefits, and risks. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 63. https://doi.org/10.1186/s43088-020-00085-5

- Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research/Reviews in Mutation Research, 636(1–3), 178–242. https://doi.org/10.1016/j.mrrev.2007.09.001
- Singh, R., & Kumar, R. (2022). Applications of Nanoparticles in Wastewater Treatment. In Nanoparticles for Wastewater Treatment (pp. 307-324). Springer
- Timmons, M. B., & Ebeling, J. M. (2007). "Recirculating Aquaculture Systems." Northeastern Regional Aquaculture Center Publication, No. 01-002.
- Zhang, Y., Chen, Y., Westerhoff, P., & Hristovski, K. (2013). Silver nanoparticle removal by coagulation and filtration. Environmental Science and Pollution Research, 20(6), 4169–4176. https://doi.org/10.1007/s11356-012-1415-8.